THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Problem Set 4

- 1. Without using any software, sketch the graph of the following functions.
 - (a) $f(x,y) = x^2 + y^2$
 - (b) $f(x,y) = x^2 y^2$
 - (c) $f(x,y) = -x^2 y^2$

For each of the above function, determine whether (0,0) is a maximum or minimum point.

- 2. Let $f(x, y) = \sin(x^2 + y^2)$.
 - (a) Plot the graph of the function f(x, y).
 - (b) Describe the level set $L_{-1}(f)$, $L_0(f)$ and $L_1(f)$.

3. Let
$$f(x,y) = e^{-x^2 - y^2}$$
.

- (a) Plot the graph of the function f(x, y).
- (b) Describe the level set $L_c(f)$.

4. Let
$$f(x,y) = \begin{cases} 1 & \text{if } |x| = |y|; \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Sketch the graph of the function f(x, y).
- (b) Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

5. Let
$$f(x,y) = \frac{xy^2 - 1}{y - 1}$$
. Prove that $\lim_{(x,y)\to(1,1)} f(x,y)$ does not exist.

6. Determine whether each the following limit exists, if yes, find its value; if no, prove your assertion.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + x^2y + 3xy^2 + 3y^3}{x^2 + 3y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{y^3}{x^2 + y^2}$$

7. Determine whether each the following limit exists, if yes, find its value; if no, prove your assertion.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2};$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^3 + y^4};$$

(d)
$$\lim_{(x,y)\to(1,1)} \frac{xy^2 - 1}{y - 1}.$$

$$xy^3$$

- (a) i. Let $\gamma(t) = (t, mt)$, for $m \in \mathbb{R}$. Show that $\lim_{t \to 0} f(\gamma(t)) = 0$. ii. Let $\gamma(t) = (0, t)$. Show that $\lim_{t \to 0} f(\gamma(t)) = 0$.
- (b) Let $\gamma(t) = (t^3, t^2)$, for $m \in \mathbb{R}$. Show that $\lim_{t \to 0} f(\gamma(t)) = 1$. Hence, determine whether $\lim_{(x,y) \to (0,0)} f(x, y)$ exists or not.
- 9. (a) Prove that for all u > 0, we have

$$\frac{1}{1+u^2} < \frac{\tan^{-1}u}{u} < 1.$$

(b) Using the result in (a), evaluate $\lim_{(x,y)\to(0,0)} \frac{\tan^{-1}(|x|+|y|)}{|x|+|y|}$.